# Orcheston and Shrewton Infiltration Reduction Plan Summary

This provides an update on the last year's groundwater situation, what mitigation actions, if any, were taken and a summary of our action plan to prevent flooding due to groundwater infiltration of our sewer network.

# **April 2024 - March 2025**

#### **Regional Summary**

2024 continued to be a very wet year in the Wessex Water region, with above average rainfall in the majority of months. In particular, groundwater levels rose dramatically in September 2024, where the region recieved over 250% of the monthly average rainfall. This resulted in many catchments experiencing inundation from groundwater much earlier than usual.

Whilst December was relatively dry, above-average rainfall for the remainder of the autumn and winter meant that groundwater levels remained elevated until March, at which point the drier weather enabled the majority of catchments to recover.

Record-breaking rainfall for some this September - Met Office

#### **Local Summary**

Groundwater reached critical levels in Orcheston between December 2024 and April 2025; however, no mitigation was required. In Shrewton several flooding incidents attributed to inadequate hydraulic capacity (IHC) occured between November 2024 and May 2025, with tankering required in February 2025 to alleviate the network.

### **Action Plan**

# **Annual Activity**

Review asset and operational data and update annual reports.

Continue monitoring system performance using telemetry, rainfall records and local groundwater levels to inform the operational response during high-groundwater periods, and to monitor changing infiltration levels in the catchment.

Use machine learning to predict flows in sewers and proactively identify blockages and other issues.

Undertake pro-active cleaning (jetting) of sewers to maximise capacity.

Proactive inspections and maintenance of sewerage assets.

#### Completed

Installed in-sewer monitors at key locations to better understand flows in the network.

Installed permanent flow meters at key pumping stations to continuously record pump performance.

Reviewed incidents of sewer flooding.

Implemented a scheme to improve the local water recycling centre (WRC).

Investigated nature-based solutions in the catchment.



# Completed (cont.)

Updated the catchment hydraulic model.

Inspected public sewer network to identify points of infiltration.

Sealed sewers and manholes to prevent groundwater infiltration.

Undertaken pumping station or flow surveys to analyse flows in sewers.

Inspected private gullies, drains or manholes to identify points of infiltration.

Upgraded pumping stations where appropriate, to improve the reliability and performance of the site.

# **Short Term**

Undertake pro-active inspection of public sewers and manholes using CCTV to identify points of infiltration. Infiltration sealing of sewers and manholes, where deemed cost-effective, targeting work according to study findings.

#### **Medium Term**

Install sealed covers on manhole chambers vulnerable to overland flow or river water entering through the cover.

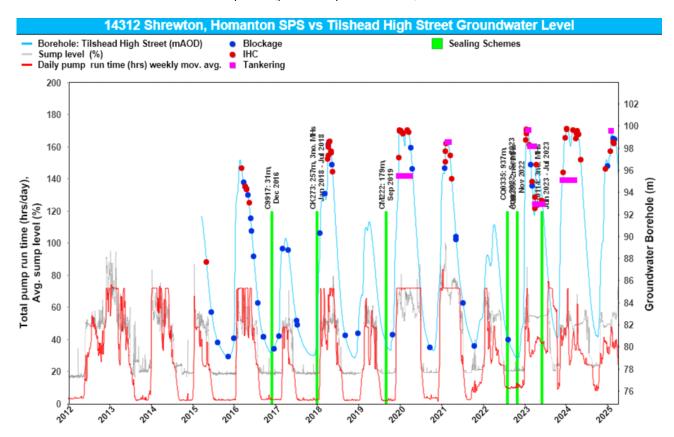
Implement Nature-based Solutions in the wider catchment.

#### **Long Term**

Identify road gullies and other impermeable areas that are connected into the foul sewers.

Consider sustainable solutions to rainwater management, for example above-ground attenuation and property-level interventions.

#### When Necessary


Implement emergency tankering procedure for preventing restricted toilet use and sewer flooding during high groundwater periods, in order to protect public health.

Implement Operational Mitigation Action Plan (OMAP) for discharging excess flows to the environment as a last resort, when tankering would not prevent restricted toilet use or sewer flooding, and public health is at risk.



# **Current Performance**

The graph below compares operational incidents with the flow at Homanton Sewage Pumping Station (SPS) and groundwater at Tilshead. There is a clear correlation between high groundwater levels, pump run times, wet well levels and incidents attributed to IHC. However, the groundwater level at which these incidents have occurred has increased over time, demonstrating that the sealing works have had a positive impact on the catchment. The reduction in the number of incidents reported (particularly in Orcheston) also demonstrates this.





# Inspection and sealing since 2011

|                               | 2011-20 | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 |
|-------------------------------|---------|---------|---------|---------|---------|---------|
| Length of sewer inspected (m) | 7,028   | 1,894   | 3,756   | 627     | 634     | 753     |
| Length of sewer sealed (m)    | 866     | -       | -       | 283     | 665     | 32      |